
 

 

 



 

 

 



 

 

 

 



 

 

 

 

 



 

 

 

 

ABSTRACT 

 
Online phishing is one of the most epidemic crime schemes of the modern Internet. A 

common countermeasure involves checking URLs against blacklists of known phishing 

websites, which are traditionally compiled based on manual verification, and is inefficient. Thus, 

as the Internet scale grows, automatic URL detection is increasingly important to provide timely 

protection to end users. In this thesis, we propose an effective and flexible malicious URL 

detection system with a rich set of features reflecting diverse characteristics of phishing 

webpages and their hosting platforms, including features that are hard to forge by a miscreant. 

Using Random Forests algorithm, our system enjoys the benefit of both high detection power 

and low error rates. Based on our knowledge, this is the first study to conduct such a large-scale 

websites/URLs scanning and classification experiments taking advantage of distributed vantage 

points for feature collection. Experiment results demonstrate that our system can be utilized for 

automatic construction of blacklists by a blacklist provider. 
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1. INTRODUCTION 
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INTRODUCTION 

 
Online phishing is one of the most epidemic crime schemes of the modern Internet. A 

common countermeasure involves checking URLs against blacklists of known phishing 

websites, which are traditionally compiled based on manual verification, and is inefficient. Thus, 

as the Internet scale grows, automatic URL detection is increasingly important to provide timely 

protection to end users. In this thesis, we propose an effective and flexible malicious URL 

detection system with a rich set of features reflecting diverse characteristics of phishing 

webpages and their hosting platforms, including features that are hard to forge by a miscreant. 

Using Random Forests algorithm, our system enjoys the benefit of both high detection power 

and low error rates. Based on our knowledge, this is the first study to conduct such a large-scale 

websites/URLs scanning and classification experiments taking advantage of distributed vantage 

points for feature collection. Experiment results demonstrate that our system can be utilized for 

automatic construction of blacklists by a blacklist provider. 

When a client tries to connect with a server through HTTPS, a TLS handshake is 

performed. As the first step, the server needs to send over an X.509 certificate signed by a CA. 

Afterward, this certificate is used by the client to identify and authenticate the server against the 

X.509 trust chain until the root CA of the certificate is found in the so-called “root certificate 

store” of the client’s computer. 
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1.1 Objective 

 

The project’s objectives are as follows: 

 To study various automatic phishing detection methods

 To identify the appropriate machine learning techniques and define a solution using the 

selected method

 To select an appropriate dataset for the problem statement

 To apply appropriate algorithms to achieve the solution to phishing attacks

 Trying to get unsuspecting users to give up their money, credentials or privacy is a 

particularly insidious form of social engineering that can have disastrous effects on 

people’s lives.

 The lure is what entices the user to click on a link. It can be advertising a way to get easy 

money, obtain an illicit product, or a warning that a user’s account has been compromised 

or blocked in some fashion.

  The hook is often a website that is designed to mimic a legitimate website of a reputable 

organization such as a bank or other financial institution.

 The hook is used to trick the user into entering and submitting their credentials such as 

user-name, password, credit card number, etc.

  The catch is when the user has submitted private information and the malicious owner of 

the website collects and uses this information to exploit the user and his account.

 Phishing attacks continue to be of persistent and critical concern to users, online 

businesses, and financial institutions.

 A phishing website lures users into divulging their sensitive information such as 

passwords, pin numbers, personal information, and credit card numbers, and uses such 

information for financial gains.

 According to current industry estimates, the annual financial losses due to phishing 

attacks across different economies surpasses $3 billion
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LITERATURE REVIEW 

 
Phishing attacks classify as social engineering attack. In this kind of attack, the adversary 

does not necessarily look for a vulnerability in the system but also, looks for unaware users to 

lure them. For example, an attacker creates a webpage similar to a login page of a well-known 

email provider and sends the link to the users and asks them to log in. In this example, there is 

not any security concern relates to the Email provider. If the end-user does not aware of the 

potential threats, they may be fooled by the attacker. During last decade, different researchers 

tried to come up with different approaches. From a higher perspective, we categorize all of these 

efforts in two major categories. In the first category, we discuss the approaches that try to 

address the problem in a human-based manner. The approaches in this category increase the 

knowledge of end-users and help them to make a good decision when they face a suspicious 

websites. In the second category, we study the software-based approaches. In this approach, 

different techniques adapt to distinguish between legitimate websites and phishing ones and 

takes them down without considering end-users. The result of this category may also be fed to 

the first category to help end-users. 

Our work in this thesis focuses mainly on detecting phishing websites with machine 

learning. There has been quite some effort regarding similar topics such as malicious domain 

blacklisting and email spam filtering. Furthermore, it is increasingly popular to utilize machine 

learning in these areas. Existing malicious websites detection approaches16–28 can be mainly 

divided into two categories based on the features leveraged: static feature based approaches16– 

23 and dynamic feature based approaches 24–28. Static feature based approaches16–23 rely on 

features extracted from the URL, page content, HTML DOM structure, domain-based 

information (such as WHOIS and DNS records) and so on. Alternatively, dynamic feature based 

solutions 24–28 primarily focus on analyzing behaviors captured when the page is loaded and 

rendered, or investigating system logs when some scripts are executed. In this thesis, we 

concentrate on exploiting static features. 
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2.1 Problem Definition 

The problem is derived after making a thorough observation and study about the method of 

classification of phishing websites that makes use of machine learning techniques. We must 

design a system that should allow us to: 

• Accurately and efficiently classify the websites into legitimate or phishing. 

• Time consumed for detection should be less and should be cost effective. 

 
 

We focus on the problem of determining if a target website is a phishing one or not, based on the 

information provided on the website. We consider the standard definitions of a phishing website 

from literature. Typically, the content of a phishing website is textually and visually similar to 

some legitimate website. We focus on characterizing the nature of such websites using only the 

information from the website and training a machine learning classifier to distinguish between 

phishing and legitimate websites. 

Currently, a lot of existing tools, encapsulated in browsers, search engines or 

applications, such as Safe Browsing from Google9 and SmartScreen10 from Microsoft, try to 

inform a user that a specific URL the user is about to visit has been identified as unsafe or 

malicious. This is realized by matching the URL being visited with blacklists constructed by the 

security community. Those blacklists are accumulated using various techniques, ranging from 

user reporting to web crawlers with site content analysis to automatic classification based on 

heuristics or machine learning classifiers. However, many malicious websites can still sneak 

through such protection systems, which can be the consequence of a number of reasons: 

1. The website is too new and thus has not been scanned or analyzed by any mechanisms 

yet. 

2. The website has been incorrectly analyzed, either due to the imperfection of mechanisms 

or the countermeasures against detection taken by the attackers, e.g. abusing the legal 

short URL services. 
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2.2 Proposed System 

The state-of-the-art machine learning approaches for phishing detection can be broadly 

classified as email, content, and URL based. The email-based approaches focus on analyzing 

emails based on various features. However, there has been the considerable evolution of phishing 

emails against such approaches, which makes them inadequate for current day context. This is 

shown by the relatively high rate of success of spear phishing emails attacks compared to other 

phishing methods. The content-based approaches perform in-depth analysis of content and build 

classifiers to detect phishing websites. These works rely on features extracted from the page 

content as 5 well as from third-party services like search engines, and DNS servers. However, 

these approaches are not efficient due to a large number of training features and the dependence 

on third-party servers. 

Using third-party servers violates user privacy by revealing the user’s browsing history. 

More importantly, several features used in these approaches, like URL related features, do not 

accurately model the phishing phenomenon. Furthermore, in most of these approaches, except 

there is a critical issue of using biased datasets and the design of features that seem to work well 

for such datasets. Approaches like examine DOM content of the pages looking for the similarity 

of attacks. But, with the advent of newer attacks like that closely mimic legitimate websites, such 

approaches will be ineffective. The URL-based approaches analyze various features based on the 

target URL such as length of the URL, page rank of the URL, number of dots in the URL, 

presence of special characters, hostname features like IP address, domain age, DNS properties, 

and geographic properties, among other features. While the intuition in these approaches is 

sound, i.e., the URL is a good indicator of phishing attacks, the structural changes of modern-day 

URLs negates several lexical features identified by these approaches. For instance, these days, 

the URLs generated by websites like Google and Amazon, are long and contain many non- 

alphabetic characters, which dilute the lexical similarity of legitimate URLs. For this reason, the 

URL based approaches inadvertently tend to be biased towards the datasets being used and are 

likely to be ineffective in the future. A few hybrid detection mechanisms combine content and 

URL features, but suffer from the same problems as described. The work in also discusses 

features based on the Fully Qualified Domain Name of the phishing website. However, their 

approach depends on the results of search engines and incurs a significant delay. 
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2.3 Proposed Work 

Machine learning algorithms have been proven to have the ability to discover complex 

correlation among different data items of similar nature. Many algorithms consist of two steps: 

learning and testing. In the learning step, the algorithms try to learn from supporting examples 

and in the testing phase, the researchers evaluate the accuracy of the algorithms. Attackers often 

use email to send out phishing URLs to the victim. Consequently, detecting potentially 

dangerous emails helps lead to prevent users to be caught in the phishing website. There is a 

wide literature on automating detection for phishing email by looking at the context of the email. 

used 16 features to detect phishing email. While they use email messages as a source to extract 

the features, we only focus on the website itself rather than how the attacker tries to tempt the 

users.described an approach based on URL classification using statistical methods to discover 

the lexical and host-based properties of malicious web site URLs. 

They use lexical properties of URLs and registration, hosting, and geographical 

information of the corresponding hosts to classify malicious web pages at a larger scale. These 

methods are able to learn highly predictive models by extracting and automatically analyzing 

tens of thousands of features potentially indicative of suspicious URLs. The resulting classifiers 

obtain 95-99% accuracy, detecting large numbers of malicious websites by just using their 

URLs. However, their approach requires a large feature set and extracts host information with 

the help of third-party servers. We discussed why using URL-based features and third-party 

services lead to a biased dataset. Provided an overview of nine different machine learning 

techniques, including Support Vector Machine, Random forests, Neural Networks, Naive Bayes, 

and Bayesian Additive Regression Trees. They analyzed the accuracy of each classifier on the 

dataset, a state of the art dataset, and achieved a maximum accuracy of 91.34% using AdaBoost. 

They used a wide range of classifiers but based on adaptive nature of these attacks and not using 

an updating dataset cannot guarantee the resiliency of the solution. 
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2.4 Problem Scope 

The system will get HTML source code and URL of input webpage first. URL features 

normally just check internal and external links from HTML source code based on domain name. 

In HTML source code, there normally are four types of features that will be investigated and 

extracted, namely login forms, hyperlinks, CSS and JavaScript, and web identity features. The 

system will extract a different set of features into a common feature vector. Then, it will train, 

test, and validate with a specific classifier such as a random forest classifier. A content-based 

framework, uses features based on capturing various characteristics of legitimate web 

applications as well as their underlying web infrastructures. focus on the fundamental 

characteristics of phishing web sites and decompose the classification task for a phishing web 

site into URL classifier and content-based classifier. Their classifier does not need periodic 

retraining. Additionally, propose to extract features from URLs and webpage links to detect 

phishing website. Also analyze the hyperlinks found in the HTML source code of the website. 

Propose a stacking model to detect phishing webpages using URL and HTML features. 
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3.1.1 PyCharm 

SYSTEM REQUIREMENT SPECIFICATION 

PyCharm is the most popular IDE used for Python scripting language. This chapter will 

give you an introduction to PyCharm and explains its features. 

PyCharm offers some of the best features to its users and developers in the following aspects − 

 

 Code completion and inspection 

 Advanced debugging 

 Support for web programming and frameworks such as Django and Flask 

 
3.1.2 Dataset 

Dataset in Python is mostly used for manipulation of Gifs and other custom data which 

frames the entire dataset as per requirement. It helps in maintaining the order and simplifying the 

complex data structure for further manipulation or enhancement. Dataset in any format is mostly 

used for many other necessities that streamline the process. Dataset in Python has a lot of 

significance and is mostly used for dealing with a huge amount of data. These datasets have a 

certain resemblance with the packages present as part of Python 3.6 and more. Python datasets 

consist of dataset object which in turn comprises metadata as part of the dataset. Querying to 

these datasets may include dataset objects to return the required index based on rows and 

columns. The dataset object comes into the picture when the data gets loaded initially that also 

comprise the metadata consisting of other important information. 
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MINIMUM SOFTWARE REQUIREMENTS 

 
 

3.2.1 Minimum Software Requirements 

 PyCharm 

 Database: Datasets 

 
3.2.2 Language Used 

 Machine Learning 

 Python 
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SYSTEM DESIGN 
 

4.1 Flowchart Diagram 
 

 

 

 

 
 

 

 

 
 

4.2 Creating a Phishing Dataset 

The dataset based on features of websites on the internet quickly become out of date and 

stale. We built a framework that can address this problem. Using that, it is possible to 

add/remove a feature to/from the dataset. In addition, the user can redo the extracting step to get 

the updated values for currently defined features. In the initial attempt, we use features that 

defined, but we implement them in the Python. To create our dataset, we scanned the top 3000 

sites in the Alexa.com database and 3000 online phishing websites obtained from phishtank.com. 

We made two assumptions here: first, all of the websites gotten from Alexa.com are legitimate 

websites. We believe this to be a valid assumption because of the ephemeral nature of phishing 

websites, they tend to pop in and out of existence (as is evidenced by the short domain 

registration times) to evade being blocked or tagged as phishing. 
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The top sites ranked in Alexa.com must be popular and have been around for a longer period of 

time to attain this ranking. Second, we assumed that websites found on the Phishtank.com were 

phishing websites. PhishTank.com incorporates a community of registered users who report sites 

as phishing. Each member is ranked by the community and builds a good reputation by correctly 

reporting if a website is phishing or not. Since it is a very well-known repository for phishing 

websites, we can trust its decision for labeling a website as a phishing one. 

 
4.3 Implemented Features 

We used 29 different features to create their dataset and we used their definitions to create our 

own dataset. These features can be categorized into five categories: URL based, DNS based, 

External statistics, HTML based, and JavaScript based. 

 
4.3.1 URL Based 

URL based features are based on some aspect of the URL of the website. Attackers try to 

use the URL to deceive users by obfuscating it in some fashion. For example, URLs that have an 

IP address, an ’at’ symbol (@), double slash, contain a prefix or suffix are all methods employed 

to disguise a URL. Other notable methods are the length of URL, whether the website has a 

subdomain, uses a shortening service or uses a non-standard port. 

 
1. Having IP Address: If an IP address is used as an alternative of the domain name in the URL, 

such as "http://125.98.3.123/fake.html", users can be sure that someone is trying to steal their 

personal information. In a Python script, we checked that if the website URL is in the form of an 

IP, we assume it as a phishing website otherwise it is legitimate. 

 
2. URL Length: To ensure the accuracy of our study, we calculated the length of URLs in the 

data set and produced an average URL length. The results showed that if the length of the URL 

is greater than or equal 54 characters then the URL classified as phishing. By reviewing our 

dataset, we were able to find 1220 URLs whose lengths equal to 54 or more which constitute 

48.8% of the total dataset size. 

http://125.98.3.123/fake.html
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3. Shortening Service: URL shortening is a method on the web in which a URL may be made 

considerably smaller in length and still lead to the same webpage. This is accomplished by 

means of an "HTTP Redirect" on a domain name that is short, which links to the webpage that 

has a long URL. For example, TinyURL is a service that makes the URL shorter. The URL like 

"http://portal.hud.ac.uk/" can be shortened to "bit.ly/19DXSk4" using this service. If it used 

TinyURL, we will assume it as a phishing, otherwise, it is a legitimate website. 

 
4. Having At (@) Symbol: A URL that contains a "@" symbol is not trusted as the browser 

generally ignores everything proceeding the "@". If the URL contains the "@" sign we marked it 

as phishing. 

 
5. Double Slash Redirecting: URLs that contain "//" are marked as phishing as the double slash 

is used to redirect users to another site. Phishing URLs employ this method to hide 20 their real 

URL. An example is http://www.colostate.edu//http://www.phishing.com. 

 

6. Prefix Suffix: The dash symbol is rarely used in legitimate URLs. Phishers tend to add 

prefixes or suffixes separated by (-) to the domain name so that users feel that they are dealing 

with a legitimate webpage. For example, http://www.Confirme-paypal.com/.In our framework, 

we check whether that website uses a "-" in the name of URL or not. If it is used, we assume it as 

a phishing website. 

 
7. Having Subdomain: Let us assume we have the following link: 

http://www.hud.ac.uk/students/.A domain name might include the countrycode top-level 

domains (ccTLD), which in our example is "UK". The "ac" part is shorthand for "academic", the 

combined "ac.uk" is called a second-level domain (SLD) and "hud" is the actual name of the 

domain. To produce a rule for extracting this feature, we first have to omit the (www.) from the 

URL which is, in fact, a subdomain in itself. Then, we have to remove the (ccTLD) if it exists. 

Finally, we count the remaining dots. If the number of dots is greater than one, then the URL is 

classified as "Suspicious" since it has one subdomain. However, if the dots are greater than two, 

it is classified as "Phishing" since it will have multiple subdomains. Otherwise, if the URL has 

no subdomains, we will assign "Legitimate" to the feature. We calculated the number of dots in a 

URL. If it is more than, we classify as phishing otherwise it is a legitimate website. 

http://portal.hud.ac.uk/
http://www.colostate.edu/
http://www.colostate.edu/
http://www.confirme-paypal.com/.In
http://www.hud.ac.uk/students/.A


 

8. Unusual Port: Most legitimate websites use ports 80 for unencrypted traffic and port 443 for 

encrypted traffic. We mark the sites that use other ports as phishing. 

 
4.4 DNS Based 

DNS based features use information of the domain such as when the domain was first 

registered and how long the registration is valid. 

 
1. Domain Update Date: This feature gets data of "Update Field" from WHOIS. This field 

demonstrates the latest time that domain owner updated the DNS record on the WHOIS 

database. The legitimate websites updated their information on the WHOIS database more often 

than the phishing website. If the updated date is less than half of a year, we mark this site as 

legitimate. 

 
2. HTTPS Token: Phishing URLs will often try to make it look like the URL uses HTTPS. 

They will include HTTPS as part of the URL, for example, http://https-colostate.edu.We mark 

this URL as phishing. 

 
3. Age of Domain: This feature can be extracted from WHOIS database. Most phishing websites 

live for a short period of time. By reviewing our dataset, we find that the minimum age of the 

legitimate domain is 6 months. Rule: If the age of domain is greater than 6 months, we will 

assume it as legitimate otherwise we will assume it as phishing. 

4. DNS Record: This feature can be extracted from WHOIS database. For phishing sites, either 

the claimed identity is not recognized by the WHOIS database or the record of the host-name is 

not founded. If the DNS record is empty or not found then the website is classified as phishing, 

otherwise, it will classify as legitimate. We implement a Python script which gets DNS 

information from www.WHOISXMLAPI.comand check if the DNS record is empty or not. 3.2.3 

 
4.5 HTML Based 

The HTML served by a website contains many valuable features used to determine if the 

site is phishing or not. Examples of these features include whether the website has a favicon and 

if the images and JavaScript have the same source URL as the serving website. 
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http://www.whoisxmlapi.comand/


 

Other HTML based features are whether the site implements iFrames, how many links 

point outside the serving domain, etc. 

 
1. Favicon: A favicon is a graphic image (icon) associated with a specific webpage. Many 

existing user agents such as graphical  browsers and newsreaders  show favicon as  a visual 

reminder of the website identity in the address bar. If the favicon is loaded from a domain other 

than that shown in the address bar, then the webpage is likely to be considered a phishing 

website. For this attribute, we checked the HTML code of each website and found where the 

Favicon is loading from. If it is loaded from a foreign domain, we assume that website is a 

phishing. 

 
2. Request URL: This feature examines whether the external objects contained within a 

webpage such as images, videos and sounds are loaded from another domain. In legitimate 

webpages, the webpage address and most of the objects embedded within the webpage are 

obtained the same domain. We implemented a Python script which looks at all of the addresses 

and marks them as domain-inside or domain-outside. If more than half of addresses are domain- 

outside, we will mark the site as phishing otherwise it is a legitimate one. 

 
3. URL of Anchor: This feature looks at the links in the website. If the links in the website point 

to a domain different from the domain of the website more than 50% of the time, then the site is 

marked as phishing. 

 
4. Links in Tags: This feature looks at the domain in the tags of the header such as 
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5. IMPLEMENTATION 



 

IMPLEMENTATION 
 

5.1 Sample Code 

 
Admin Page Code 

def domainAge(domain_name): 

creation_date = domain_name.creation_date 

expiration_date = domain_name.expiration_date 

if (isinstance(creation_date,str) or isinstance(expiration_date,str)): 

try: 

creation_date = datetime.strptime(creation_date,'%Y-%m-%d') 

expiration_date = datetime.strptime(expiration_date,"%Y-%m-%d") 

except: 

return 1 

if ((expiration_date is None) or (creation_date is None)): 

return 1 

elif ((type(expiration_date) is list) or (type(creation_date) is list)): 

return 1 

else: 

ageofdomain = abs((expiration_date - creation_date).days) 

if ((ageofdomain/30) < 6): 

age = 1 

else: 

age = 0 

return age 

 

# 14.End time of domain: The difference between termination time and current time 

(Domain_End) 

def domainEnd(domain_name): 
expiration_date = domain_name.expiration_date 

if isinstance(expiration_date,str): 

try: 

expiration_date = datetime.strptime(expiration_date,"%Y-%m-%d") 

except: 

return 1 

if (expiration_date is None): 

return 1 

elif (type(expiration_date) is list): 

return 1 

else: 
today = datetime.now() 

end = abs((expiration_date - today).days) 

if ((end/30) < 6): 

end = 0 

else: 
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# importing required packages for this section 

import requests 

 

# IFrame Redirection (iFrame) 

def iframe(response): 

if response == "": 

return 1 

else: 
if re.findall(r"[<iframe>|<frameBorder>]", response.text): 

return 0 

else: 

return 1 

 
 

# Checks the effect of mouse over on status bar (Mouse_Over) 

def mouseOver(response): 

if response == "": 

return 1 

else: 

if re.findall("<script>.+onmouseover.+</script>", response.text): 

return 1 

else: 

return 0 

 
 

# Checks the status of the right click attribute (Right_Click) 

def rightClick(response): 

if response == "": 

return 1 

else: 

if re.findall(r"event.button ?== ?2", response.text): 

return 0 

else: 

return 1 

 
 

# Checks the number of forwardings (Web_Forwards) 

def forwarding(response): 

if response == "": 

return 1 

else: 

if len(response.history) <= 2: 

return 0 

else: 

return 1 
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# Function to extract features 

def featureExtraction(url): 

features = [] 

getDomain(url) 

# Address bar based features (10) 

features.append(havingIP(url)) 

features.append(haveAtSign(url)) 

features.append(getLength(url)) 

features.append(getDepth(url)) 

features.append(redirection(url)) 

features.append(httpDomain(url)) 

features.append(tinyURL(url)) 

features.append(prefixSuffix(url)) 

 

# Domain based features (4) 

dns = 0 

try: 

domain_name = whois.whois(urlparse(url).netloc) 

except: 

dns = 1 

 

features.append(dns) 

#features.append(web_traffic(url)) 

features.append(1 if dns == 1 else domainAge(domain_name)) 

features.append(1 if dns == 1 else domainEnd(domain_name)) 

 

# HTML & Javascript based features (4) 

try: 

response = requests.get(url) 

except: 

response = "" 

features.append(iframe(response)) 

features.append(mouseOver(response)) 

features.append(rightClick(response)) 

features.append(forwarding(response)) 

#features.append(la) 
 

return features 

''' 

d='http://www.abxchvina.cn/' 

fe = featureExtraction(d) 

print(fe) 

 

feature =[] 

for i in range(0, len(data)): 

print(data[i]) 

feature.append(featureExtraction(data[i],l[i])) 

http://www.abxchvina.cn/%27
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#converting the list to dataframe 

feature_names = ['Have_IP', 'Have_At', 'URL_Length', 'URL_Depth','Redirection', 

'https_Domain', 'TinyURL', 'Prefix/Suffix', 'DNS_Record', 

'Domain_Age', 'Domain_End', 'iFrame', 'Mouse_Over','Right_Click', 

'Web_Forwards', 'Label'] 

 

urls = pd.DataFrame(feature, columns= feature_names) 

 
 

urls.to_csv('', index= False) 

 
from flask import Flask, render_template, request 

import dbn as d 

import feature_extraction as fe 

app = Flask( name ) 

 

@app.route('/', methods=["GET", "POST"]) 

def get_bot_response(): 

if request.method == "POST": 

data = request.form.get('msg') 

features = [] 

 

features.append(fe.featureExtraction(data)) 

 

finalOutput_DBN, reconstructedOutput_DBN = d.dbn.dbn_output(features) 

yhat = d.clf.predict(finalOutput_DBN) 

if (yhat == 1): 

return render_template("phishing.html") 

else: 

return render_template("legitimate.html") 

return render_template("index.html") 

 
 

if  name == ' main ': 

app.run() 

 

train_index = range(0, len(train_X)) 

test_index = range(len(train_X), len(train_X)+len(test_X)) 

 

print(train_index) 

print(test_index) 



24  

train_X = pd.DataFrame(data=train_X, index=train_index) 

train_Y = pd.Series(data=train_Y, index=train_index) 

 

test_X = pd.DataFrame(data=test_X, index=test_index) 

test_Y = pd.Series(data=test_Y, index=test_index) 

 

print(train_X.describe()) 

class RBM(object): 

def init (self, input_size, output_size, 

learning_rate, epochs, batchsize): 

# Define hyperparameters 

self._input_size = input_size 

self._output_size = output_size 

self.learning_rate = learning_rate 

self.epochs = epochs 

self.batchsize = batchsize 

 

# Initialize weights and biases using zero matrices 

self.w = np.zeros([input_size, output_size], dtype=np.float32) 

self.hb = np.zeros([output_size], dtype=np.float32) 

self.vb = np.zeros([input_size], dtype=np.float32) 

 

# forward pass, where h is the hidden layer and v is the visible layer 

def prob_h_given_v(self, visible, w, hb): 

return tf.nn.sigmoid(tf.matmul(visible, w) + hb) 

 

# backward pass 

def prob_v_given_h(self, hidden, w, vb): 

return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(w)) + vb) 

 

# sampling function 

def sample_prob(self, probs): 

return tf.nn.relu(tf.sign(probs - tf.random.uniform(tf.shape(probs)))) 

 

def train(self, X): 

tf.compat.v1.disable_eager_execution() 

_w = tf.compat.v1.placeholder(tf.float32, [self._input_size, self._output_size]) 

_hb = tf.compat.v1.placeholder(tf.float32, [self._output_size]) 

_vb = tf.compat.v1.placeholder(tf.float32, [self._input_size]) 

 

prv_w = np.zeros([self._input_size, self._output_size], dtype=np.float32) 

prv_hb = np.zeros([self._output_size], dtype=np.float32) 

prv_vb = np.zeros([self._input_size], dtype=np.float32) 
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cur_w = np.zeros([self._input_size, self._output_size], dtype=np.float32) 

cur_hb = np.zeros([self._output_size], dtype=np.float32) 

cur_vb = np.zeros([self._input_size], dtype=np.float32) 

v0 = tf.compat.v1.placeholder(tf.float32, [None, self._input_size]) 

# v0 = tf.keras.Input(shape=[None, self._input_size], dtype=tf.float32) 

h0 = self.sample_prob(self.prob_h_given_v(v0, _w, _hb)) 

v1 = self.sample_prob(self.prob_v_given_h(h0, _w, _vb)) 

h1 = self.prob_h_given_v(v1, _w, _hb) 

# To update the weights, we perform constrastive divergence. 

positive_grad = tf.matmul(tf.transpose(v0), h0) 

negative_grad = tf.matmul(tf.transpose(v1), h1) 

 

update_w = _w + self.learning_rate * (positive_grad - negative_grad) / 

tf.cast(tf.shape(v0)[0], float) 

update_vb = _vb + self.learning_rate * tf.reduce_mean(v0 - v1, 0) 

update_hb = _hb + self.learning_rate * tf.reduce_mean(h0 - h1, 0) 

# We also define the error as the MSE 

err = tf.reduce_mean(tf.square(v0 - v1)) 

error_list = [] 

'''Once we call sess.run, we can feed in batches of data to begin the training. 

During the training, forward and backward passes will be made, and the RBM 

will update weights based on how the generated data compares to the original input. 

We will print the reconstruction error from each epoch''' 

with tf.compat.v1.Session() as sess: 

sess.run(tf.compat.v1.global_variables_initializer()) 

for epoch in range(self.epochs): 

for start, end in zip(range(0, len(X), self.batchsize), range(self.batchsize, len(X), 

self.batchsize)): 

batch = X[start:end] 

cur_w = sess.run(update_w, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: 

prv_vb}) 

prv_vb}) 

prv_vb}) 

 

cur_hb = sess.run(update_hb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: 

cur_vb = sess.run(update_vb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: 

prv_w = cur_w 

prv_hb = cur_hb 

prv_vb = cur_vb 

error = sess.run(err, feed_dict={v0: X, _w: cur_w, _vb: cur_vb, _hb: cur_hb}) 

print('Epoch: %d' % epoch, 'reconstruction error: %f' % error) 

error_list.append(error) 

self.w = prv_w 

self.hb = prv_hb 
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self.vb = prv_vb 

return error_list 

 

# function to generate new images from the generative model that the RBM has learned 

def rbm_output(self, X): 

 
 

input_X = tf.constant(X) 

_w = tf.constant(self.w) 

_hb = tf.constant(self.hb) 

_vb = tf.constant(self.vb) 

out = tf.nn.sigmoid(tf.matmul(input_X, _w) + _hb) 

hiddenGen = self.sample_prob(self.prob_h_given_v(input_X, _w, _hb)) 

visibleGen = self.sample_prob(self.prob_v_given_h(hiddenGen, _w, _vb)) 

with tf.compat.v1.Session() as sess: 

sess.run(tf.compat.v1.global_variables_initializer()) 

return sess.run(out), sess.run(visibleGen), sess.run(hiddenGen) 

 

inputX = np.array(train_X) 

inputX = inputX.astype(np.float32) 

 

# Create list to hold our RBMs 

rbm_list = [] 

 

# Define the parameters of the RBMs we will train 

rbm_list.append(RBM(15, 12, 1.0, 50, 100)) 

rbm_list.append(RBM(12, 8, 1.0, 50, 100)) 

rbm_list.append(RBM(8, 5, 1.0, 50, 100)) 

 
 

outputList = [] 

error_list = [] 

 

# For each RBM in our list 

for i in range(0, len(rbm_list)): 

print('RBM', i + 1) 

# Train a new one 

rbm = rbm_list[i] 

err = rbm.train(inputX) 

error_list.append(err) 

outputX, reconstructedX, hiddenX = rbm.rbm_output(inputX) 

outputList.append(outputX) 

inputX = hiddenX 

''' 

i = 1 

for err in error_list: 
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plt.xlabel("Epoch") 

plt.ylabel("Reconstruction Error") 

plt.show() 

i += 1 

 

class DBN(object): 

def init (self, original_input_size, input_size, output_size, 

learning_rate, epochs, batchsize, rbmOne, rbmTwo, rbmThree): 

# Define hyperparameters 

self._original_input_size = original_input_size 

self._input_size = input_size 

self._output_size = output_size 

self.learning_rate = learning_rate 

with tf.compat.v1.Session() as sess: 

sess.run(tf.compat.v1.global_variables_initializer()) 

for epoch in range(self.epochs): 

for start, end in zip(range(0, len(X), self.batchsize), range(self.batchsize, len(X), 

self.batchsize)): 

batch = X[start:end] 

cur_w = sess.run(update_w, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: 

prv_vb}) 

prv_vb}) 

prv_vb}) 

cur_hb = sess.run(update_hb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: 

cur_vb = sess.run(update_vb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb: 

prv_w = cur_w 

prv_hb = cur_hb 
prv_vb = cur_vb 

error = sess.run(err, feed_dict={v0: X, _w: cur_w, _vb: cur_vb, _hb: cur_hb}) 

print('Epoch: %d' % epoch, 'reconstruction error: %f' % error) 

error_list.append(error) 

self.w = prv_w 

self.hb = prv_hb 

self.vb = prv_vb 

return error_list 

 

# function to generate new images from the generative model that the RBM has learned 

def rbm_output(self, X): 



 

 

 

 

 

5.2 Screenshots 
 

 

Fig.5.2.1 Homepage 
 

Fig.5.2.2 Phishing Detection 



 

 

 

 

 
 

 
 

Fig.5.2.3 Trusted Site 
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6. ADVANTAGES 



 

ADVANTAGES 

 
Improved Approach: Domain Name Based Features With the Fresh-Phish framework, we 

learned several lessons and were able to get a better understanding of the features that need to be 

used for phishing detection. For instance, one lesson we learned is that the problem of phishing 

cannot be viewed in a statistical way and needs to consider the intent of the attackers for fooling 

the users. Therefore, the features should be finally chosen for phishing detection, should reflect 

this intuition. Another important lesson we learned was there is a strong correlation between the 

domain name and the nature of the websites. Based on these observations, we now describe our 

solution. Our work is the first solution to be entirely focused on the domain name of the phishing 

website. In our work, the domain name is the string before the top-level domain identifier, e.g., 

for the URL google.co.uk, the domain name is google. We only concern ourselves with 

examining the landing page of this website and with the information that can be extracted from 

this page without the help of third-party servers, search engines or DNS servers. Our approach is 

based on the intuition that the domain name of the phishing websites is a key indicator of a 

phishing attack. We design several features that are based on the domain name and train a 

machine learning classifier based on sample data. The trained classifier is used to test a 

suspicious website against these features. In the following, we describe the key challenges in our 

proposed approach and our solutions to these challenges. 
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7. APPLICATIONS 



 

APPLICATIONS 

 
Phishing campaigns usually work based on a three-part scheme. The first part is using email 

or some form of communication to lure users and redirect them to a phishing page. The fake 

page closely mimics a trustworthy site. Finally, the user enters their information, which is 

captured by the adversary. In our proposed approach, instead of defining features that group the 

phishing websites together, we relate a suspicious phishing website to its target and define 

features based on the similarity of a given suspicious website and its target.Reach more 

customers. 

Phishing attacks are constantly evolving and the cyber world is hit by new types of 

attacks often. Hence a particular detection approach or algorithm cannot be tagged as the best 

one giving exact results. Through the literature survey, it is evidently visible that Random Forest 

gives better results in most scenarios. But then the performance of each algorithm varies 

depending on the dataset used, train-test split ratio, feature selection techniques applied etc. 

Researchrs prefer to create machine learning models that perform phishing detection with best 

value for evaluation parameters and least training time. Therefore, the future works should focus 

on these aspects of phishing detection. 
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8. CONCLUSION 



 

CONCLUSION 

The goal of this thesis was to explore the possibility of using machine learning to detect 

phishing URLs without performing additional scraping of the URL itself. The first chapter 

overviewed the recent trends in phishing, listed the general types of internet-based phishing, and 

focused on describing the main techniques of creating a deceptive URL. The second chapter 

provided a brief high-level overview of the machine learning landscape as a whole. A description 

of the available data and the methods of its collections were presented in the third chapter. 

Chapter four outlined the basic principles upon which each of the selected machine learning 

algorithms works and highlighted their main strengths and weaknesses. The fifth chapter 

explains the methodology used for the conducted experiment. Chapter six informed on the 

process of the model training phase and the final choices of hyper parameters for the individual 

algorithms. Finally, the seventh chapter provided an evaluation of models’ performance, 

summarized the results of the experiment, and discussed the limitations and possible 

improvements to the approach. The results of this experiment show that we are able to detect 

phishing URLs with a precision of 96% (for the positive class) and classify URL as benign or 

phishing with an accuracy of 95% using Random Forest algorithm. All of the other used 

algorithms performed rather similarly except for Naive Bayes, which showed slightly worse 

results. The primary output of this thesis is the in-depth description of the possible approach to 

tackling the phishing detection problem without any web scraping. The secondary output is a 

standalone machine learning project that allows for future replications or modifications of the 

performed experiment. 
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