

ABSTRACT

Online phishing is one of the most epidemic crime schemes of the modern Internet. A

common countermeasure involves checking URLs against blacklists of known phishing

websites, which are traditionally compiled based on manual verification, and is inefficient. Thus,

as the Internet scale grows, automatic URL detection is increasingly important to provide timely

protection to end users. In this thesis, we propose an effective and flexible malicious URL

detection system with a rich set of features reflecting diverse characteristics of phishing

webpages and their hosting platforms, including features that are hard to forge by a miscreant.

Using Random Forests algorithm, our system enjoys the benefit of both high detection power

and low error rates. Based on our knowledge, this is the first study to conduct such a large-scale

websites/URLs scanning and classification experiments taking advantage of distributed vantage

points for feature collection. Experiment results demonstrate that our system can be utilized for

automatic construction of blacklists by a blacklist provider.

INDEX

CHPT NO. TITLE

ACKNOWLEGEMENT

ABSTRACT

PAGE NO.

iv

v

1. INTRODUCTION 2

 1.1 Objectives 3

2. LITERATURE REVIEW 4

 2.1 Problem Definition 5

 2.2 Proposed System 6

 2.3 Proposed Work 7

 2.4 Problem Scope 8

3. SYSTEM REQUIREMENT SPECIFICATION 9

 3.1 Software Specification 10

 3.1.1 PyCharm 10

 3.1.2 Dataset 10

 3.2 Minimum Software and Hardware 11

 3.2.1 Minimum Software 11

 3.2.2 Minimum Hardware 11

4. SYSTEM DESIGN 12

 4.1 Flowchart Diagram 13

 4.2 Creating a Phishing Dataset 14

 4.3 Implemented Features 15

 4.3.1 URL Based

 4.4 DNS Based 16

 4.5 HTML Based 17

CHPT NO. TITLE PAGE NO.

5. IMPLEMENTATION 18

5.1 Sample Code 19

5.2 Screenshots 27

6. ADVANTAGES 30

7. APPLICATIONS 32

8. CONCLUSION 34

9.1 Work Done 35

9.2 Future Enhancement 36

9. REFERENCES 37

LIST OF FIGURES

Figure

No.
Caption / Title Page No.

4.1.1 App Flowchart 18

4.1.2 Database Flow Diagram 19

5.2.1 Screenshot 1 27

5.2.2 Screenshot 2 27

5.2.3 Screenshot 3 28

1. INTRODUCTION

1

INTRODUCTION

Online phishing is one of the most epidemic crime schemes of the modern Internet. A

common countermeasure involves checking URLs against blacklists of known phishing

websites, which are traditionally compiled based on manual verification, and is inefficient. Thus,

as the Internet scale grows, automatic URL detection is increasingly important to provide timely

protection to end users. In this thesis, we propose an effective and flexible malicious URL

detection system with a rich set of features reflecting diverse characteristics of phishing

webpages and their hosting platforms, including features that are hard to forge by a miscreant.

Using Random Forests algorithm, our system enjoys the benefit of both high detection power

and low error rates. Based on our knowledge, this is the first study to conduct such a large-scale

websites/URLs scanning and classification experiments taking advantage of distributed vantage

points for feature collection. Experiment results demonstrate that our system can be utilized for

automatic construction of blacklists by a blacklist provider.

When a client tries to connect with a server through HTTPS, a TLS handshake is

performed. As the first step, the server needs to send over an X.509 certificate signed by a CA.

Afterward, this certificate is used by the client to identify and authenticate the server against the

X.509 trust chain until the root CA of the certificate is found in the so-called “root certificate

store” of the client’s computer.

2

1.1 Objective

The project’s objectives are as follows:

 To study various automatic phishing detection methods

 To identify the appropriate machine learning techniques and define a solution using the

selected method

 To select an appropriate dataset for the problem statement

 To apply appropriate algorithms to achieve the solution to phishing attacks

 Trying to get unsuspecting users to give up their money, credentials or privacy is a

particularly insidious form of social engineering that can have disastrous effects on

people’s lives.

 The lure is what entices the user to click on a link. It can be advertising a way to get easy

money, obtain an illicit product, or a warning that a user’s account has been compromised

or blocked in some fashion.

 The hook is often a website that is designed to mimic a legitimate website of a reputable

organization such as a bank or other financial institution.

 The hook is used to trick the user into entering and submitting their credentials such as

user-name, password, credit card number, etc.

 The catch is when the user has submitted private information and the malicious owner of

the website collects and uses this information to exploit the user and his account.

 Phishing attacks continue to be of persistent and critical concern to users, online

businesses, and financial institutions.

 A phishing website lures users into divulging their sensitive information such as

passwords, pin numbers, personal information, and credit card numbers, and uses such

information for financial gains.

 According to current industry estimates, the annual financial losses due to phishing

attacks across different economies surpasses $3 billion

2. LITERATURE REVIEW

4

LITERATURE REVIEW

Phishing attacks classify as social engineering attack. In this kind of attack, the adversary

does not necessarily look for a vulnerability in the system but also, looks for unaware users to

lure them. For example, an attacker creates a webpage similar to a login page of a well-known

email provider and sends the link to the users and asks them to log in. In this example, there is

not any security concern relates to the Email provider. If the end-user does not aware of the

potential threats, they may be fooled by the attacker. During last decade, different researchers

tried to come up with different approaches. From a higher perspective, we categorize all of these

efforts in two major categories. In the first category, we discuss the approaches that try to

address the problem in a human-based manner. The approaches in this category increase the

knowledge of end-users and help them to make a good decision when they face a suspicious

websites. In the second category, we study the software-based approaches. In this approach,

different techniques adapt to distinguish between legitimate websites and phishing ones and

takes them down without considering end-users. The result of this category may also be fed to

the first category to help end-users.

Our work in this thesis focuses mainly on detecting phishing websites with machine

learning. There has been quite some effort regarding similar topics such as malicious domain

blacklisting and email spam filtering. Furthermore, it is increasingly popular to utilize machine

learning in these areas. Existing malicious websites detection approaches16–28 can be mainly

divided into two categories based on the features leveraged: static feature based approaches16–

23 and dynamic feature based approaches 24–28. Static feature based approaches16–23 rely on

features extracted from the URL, page content, HTML DOM structure, domain-based

information (such as WHOIS and DNS records) and so on. Alternatively, dynamic feature based

solutions 24–28 primarily focus on analyzing behaviors captured when the page is loaded and

rendered, or investigating system logs when some scripts are executed. In this thesis, we

concentrate on exploiting static features.

5

2.1 Problem Definition

The problem is derived after making a thorough observation and study about the method of

classification of phishing websites that makes use of machine learning techniques. We must

design a system that should allow us to:

• Accurately and efficiently classify the websites into legitimate or phishing.

• Time consumed for detection should be less and should be cost effective.

We focus on the problem of determining if a target website is a phishing one or not, based on the

information provided on the website. We consider the standard definitions of a phishing website

from literature. Typically, the content of a phishing website is textually and visually similar to

some legitimate website. We focus on characterizing the nature of such websites using only the

information from the website and training a machine learning classifier to distinguish between

phishing and legitimate websites.

Currently, a lot of existing tools, encapsulated in browsers, search engines or

applications, such as Safe Browsing from Google9 and SmartScreen10 from Microsoft, try to

inform a user that a specific URL the user is about to visit has been identified as unsafe or

malicious. This is realized by matching the URL being visited with blacklists constructed by the

security community. Those blacklists are accumulated using various techniques, ranging from

user reporting to web crawlers with site content analysis to automatic classification based on

heuristics or machine learning classifiers. However, many malicious websites can still sneak

through such protection systems, which can be the consequence of a number of reasons:

1. The website is too new and thus has not been scanned or analyzed by any mechanisms

yet.

2. The website has been incorrectly analyzed, either due to the imperfection of mechanisms

or the countermeasures against detection taken by the attackers, e.g. abusing the legal

short URL services.

6

2.2 Proposed System

The state-of-the-art machine learning approaches for phishing detection can be broadly

classified as email, content, and URL based. The email-based approaches focus on analyzing

emails based on various features. However, there has been the considerable evolution of phishing

emails against such approaches, which makes them inadequate for current day context. This is

shown by the relatively high rate of success of spear phishing emails attacks compared to other

phishing methods. The content-based approaches perform in-depth analysis of content and build

classifiers to detect phishing websites. These works rely on features extracted from the page

content as 5 well as from third-party services like search engines, and DNS servers. However,

these approaches are not efficient due to a large number of training features and the dependence

on third-party servers.

Using third-party servers violates user privacy by revealing the user’s browsing history.

More importantly, several features used in these approaches, like URL related features, do not

accurately model the phishing phenomenon. Furthermore, in most of these approaches, except

there is a critical issue of using biased datasets and the design of features that seem to work well

for such datasets. Approaches like examine DOM content of the pages looking for the similarity

of attacks. But, with the advent of newer attacks like that closely mimic legitimate websites, such

approaches will be ineffective. The URL-based approaches analyze various features based on the

target URL such as length of the URL, page rank of the URL, number of dots in the URL,

presence of special characters, hostname features like IP address, domain age, DNS properties,

and geographic properties, among other features. While the intuition in these approaches is

sound, i.e., the URL is a good indicator of phishing attacks, the structural changes of modern-day

URLs negates several lexical features identified by these approaches. For instance, these days,

the URLs generated by websites like Google and Amazon, are long and contain many non-

alphabetic characters, which dilute the lexical similarity of legitimate URLs. For this reason, the

URL based approaches inadvertently tend to be biased towards the datasets being used and are

likely to be ineffective in the future. A few hybrid detection mechanisms combine content and

URL features, but suffer from the same problems as described. The work in also discusses

features based on the Fully Qualified Domain Name of the phishing website. However, their

approach depends on the results of search engines and incurs a significant delay.

7

2.3 Proposed Work

Machine learning algorithms have been proven to have the ability to discover complex

correlation among different data items of similar nature. Many algorithms consist of two steps:

learning and testing. In the learning step, the algorithms try to learn from supporting examples

and in the testing phase, the researchers evaluate the accuracy of the algorithms. Attackers often

use email to send out phishing URLs to the victim. Consequently, detecting potentially

dangerous emails helps lead to prevent users to be caught in the phishing website. There is a

wide literature on automating detection for phishing email by looking at the context of the email.

used 16 features to detect phishing email. While they use email messages as a source to extract

the features, we only focus on the website itself rather than how the attacker tries to tempt the

users.described an approach based on URL classification using statistical methods to discover

the lexical and host-based properties of malicious web site URLs.

They use lexical properties of URLs and registration, hosting, and geographical

information of the corresponding hosts to classify malicious web pages at a larger scale. These

methods are able to learn highly predictive models by extracting and automatically analyzing

tens of thousands of features potentially indicative of suspicious URLs. The resulting classifiers

obtain 95-99% accuracy, detecting large numbers of malicious websites by just using their

URLs. However, their approach requires a large feature set and extracts host information with

the help of third-party servers. We discussed why using URL-based features and third-party

services lead to a biased dataset. Provided an overview of nine different machine learning

techniques, including Support Vector Machine, Random forests, Neural Networks, Naive Bayes,

and Bayesian Additive Regression Trees. They analyzed the accuracy of each classifier on the

dataset, a state of the art dataset, and achieved a maximum accuracy of 91.34% using AdaBoost.

They used a wide range of classifiers but based on adaptive nature of these attacks and not using

an updating dataset cannot guarantee the resiliency of the solution.

8

2.4 Problem Scope

The system will get HTML source code and URL of input webpage first. URL features

normally just check internal and external links from HTML source code based on domain name.

In HTML source code, there normally are four types of features that will be investigated and

extracted, namely login forms, hyperlinks, CSS and JavaScript, and web identity features. The

system will extract a different set of features into a common feature vector. Then, it will train,

test, and validate with a specific classifier such as a random forest classifier. A content-based

framework, uses features based on capturing various characteristics of legitimate web

applications as well as their underlying web infrastructures. focus on the fundamental

characteristics of phishing web sites and decompose the classification task for a phishing web

site into URL classifier and content-based classifier. Their classifier does not need periodic

retraining. Additionally, propose to extract features from URLs and webpage links to detect

phishing website. Also analyze the hyperlinks found in the HTML source code of the website.

Propose a stacking model to detect phishing webpages using URL and HTML features.

3. SYSTEM REQUIREMENT

SPECIFICATION

10

3.1.1 PyCharm

SYSTEM REQUIREMENT SPECIFICATION

PyCharm is the most popular IDE used for Python scripting language. This chapter will

give you an introduction to PyCharm and explains its features.

PyCharm offers some of the best features to its users and developers in the following aspects −

 Code completion and inspection

 Advanced debugging

 Support for web programming and frameworks such as Django and Flask

3.1.2 Dataset

Dataset in Python is mostly used for manipulation of Gifs and other custom data which

frames the entire dataset as per requirement. It helps in maintaining the order and simplifying the

complex data structure for further manipulation or enhancement. Dataset in any format is mostly

used for many other necessities that streamline the process. Dataset in Python has a lot of

significance and is mostly used for dealing with a huge amount of data. These datasets have a

certain resemblance with the packages present as part of Python 3.6 and more. Python datasets

consist of dataset object which in turn comprises metadata as part of the dataset. Querying to

these datasets may include dataset objects to return the required index based on rows and

columns. The dataset object comes into the picture when the data gets loaded initially that also

comprise the metadata consisting of other important information.

11

MINIMUM SOFTWARE REQUIREMENTS

3.2.1 Minimum Software Requirements

 PyCharm

 Database: Datasets

3.2.2 Language Used

 Machine Learning

 Python

4. System Design

13

SYSTEM DESIGN

4.1 Flowchart Diagram

4.2 Creating a Phishing Dataset

The dataset based on features of websites on the internet quickly become out of date and

stale. We built a framework that can address this problem. Using that, it is possible to

add/remove a feature to/from the dataset. In addition, the user can redo the extracting step to get

the updated values for currently defined features. In the initial attempt, we use features that

defined, but we implement them in the Python. To create our dataset, we scanned the top 3000

sites in the Alexa.com database and 3000 online phishing websites obtained from phishtank.com.

We made two assumptions here: first, all of the websites gotten from Alexa.com are legitimate

websites. We believe this to be a valid assumption because of the ephemeral nature of phishing

websites, they tend to pop in and out of existence (as is evidenced by the short domain

registration times) to evade being blocked or tagged as phishing.

14

The top sites ranked in Alexa.com must be popular and have been around for a longer period of

time to attain this ranking. Second, we assumed that websites found on the Phishtank.com were

phishing websites. PhishTank.com incorporates a community of registered users who report sites

as phishing. Each member is ranked by the community and builds a good reputation by correctly

reporting if a website is phishing or not. Since it is a very well-known repository for phishing

websites, we can trust its decision for labeling a website as a phishing one.

4.3 Implemented Features

We used 29 different features to create their dataset and we used their definitions to create our

own dataset. These features can be categorized into five categories: URL based, DNS based,

External statistics, HTML based, and JavaScript based.

4.3.1 URL Based

URL based features are based on some aspect of the URL of the website. Attackers try to

use the URL to deceive users by obfuscating it in some fashion. For example, URLs that have an

IP address, an ’at’ symbol (@), double slash, contain a prefix or suffix are all methods employed

to disguise a URL. Other notable methods are the length of URL, whether the website has a

subdomain, uses a shortening service or uses a non-standard port.

1. Having IP Address: If an IP address is used as an alternative of the domain name in the URL,

such as "http://125.98.3.123/fake.html", users can be sure that someone is trying to steal their

personal information. In a Python script, we checked that if the website URL is in the form of an

IP, we assume it as a phishing website otherwise it is legitimate.

2. URL Length: To ensure the accuracy of our study, we calculated the length of URLs in the

data set and produced an average URL length. The results showed that if the length of the URL

is greater than or equal 54 characters then the URL classified as phishing. By reviewing our

dataset, we were able to find 1220 URLs whose lengths equal to 54 or more which constitute

48.8% of the total dataset size.

http://125.98.3.123/fake.html

15

3. Shortening Service: URL shortening is a method on the web in which a URL may be made

considerably smaller in length and still lead to the same webpage. This is accomplished by

means of an "HTTP Redirect" on a domain name that is short, which links to the webpage that

has a long URL. For example, TinyURL is a service that makes the URL shorter. The URL like

"http://portal.hud.ac.uk/" can be shortened to "bit.ly/19DXSk4" using this service. If it used

TinyURL, we will assume it as a phishing, otherwise, it is a legitimate website.

4. Having At (@) Symbol: A URL that contains a "@" symbol is not trusted as the browser

generally ignores everything proceeding the "@". If the URL contains the "@" sign we marked it

as phishing.

5. Double Slash Redirecting: URLs that contain "//" are marked as phishing as the double slash

is used to redirect users to another site. Phishing URLs employ this method to hide 20 their real

URL. An example is http://www.colostate.edu//http://www.phishing.com.

6. Prefix Suffix: The dash symbol is rarely used in legitimate URLs. Phishers tend to add

prefixes or suffixes separated by (-) to the domain name so that users feel that they are dealing

with a legitimate webpage. For example, http://www.Confirme-paypal.com/.In our framework,

we check whether that website uses a "-" in the name of URL or not. If it is used, we assume it as

a phishing website.

7. Having Subdomain: Let us assume we have the following link:

http://www.hud.ac.uk/students/.A domain name might include the countrycode top-level

domains (ccTLD), which in our example is "UK". The "ac" part is shorthand for "academic", the

combined "ac.uk" is called a second-level domain (SLD) and "hud" is the actual name of the

domain. To produce a rule for extracting this feature, we first have to omit the (www.) from the

URL which is, in fact, a subdomain in itself. Then, we have to remove the (ccTLD) if it exists.

Finally, we count the remaining dots. If the number of dots is greater than one, then the URL is

classified as "Suspicious" since it has one subdomain. However, if the dots are greater than two,

it is classified as "Phishing" since it will have multiple subdomains. Otherwise, if the URL has

no subdomains, we will assign "Legitimate" to the feature. We calculated the number of dots in a

URL. If it is more than, we classify as phishing otherwise it is a legitimate website.

http://portal.hud.ac.uk/
http://www.colostate.edu/
http://www.colostate.edu/
http://www.confirme-paypal.com/.In
http://www.hud.ac.uk/students/.A

8. Unusual Port: Most legitimate websites use ports 80 for unencrypted traffic and port 443 for

encrypted traffic. We mark the sites that use other ports as phishing.

4.4 DNS Based

DNS based features use information of the domain such as when the domain was first

registered and how long the registration is valid.

1. Domain Update Date: This feature gets data of "Update Field" from WHOIS. This field

demonstrates the latest time that domain owner updated the DNS record on the WHOIS

database. The legitimate websites updated their information on the WHOIS database more often

than the phishing website. If the updated date is less than half of a year, we mark this site as

legitimate.

2. HTTPS Token: Phishing URLs will often try to make it look like the URL uses HTTPS.

They will include HTTPS as part of the URL, for example, http://https-colostate.edu.We mark

this URL as phishing.

3. Age of Domain: This feature can be extracted from WHOIS database. Most phishing websites

live for a short period of time. By reviewing our dataset, we find that the minimum age of the

legitimate domain is 6 months. Rule: If the age of domain is greater than 6 months, we will

assume it as legitimate otherwise we will assume it as phishing.

4. DNS Record: This feature can be extracted from WHOIS database. For phishing sites, either

the claimed identity is not recognized by the WHOIS database or the record of the host-name is

not founded. If the DNS record is empty or not found then the website is classified as phishing,

otherwise, it will classify as legitimate. We implement a Python script which gets DNS

information from www.WHOISXMLAPI.comand check if the DNS record is empty or not. 3.2.3

4.5 HTML Based

The HTML served by a website contains many valuable features used to determine if the

site is phishing or not. Examples of these features include whether the website has a favicon and

if the images and JavaScript have the same source URL as the serving website.

16

http://https-colostate.edu.we/
http://www.whoisxmlapi.comand/

Other HTML based features are whether the site implements iFrames, how many links

point outside the serving domain, etc.

1. Favicon: A favicon is a graphic image (icon) associated with a specific webpage. Many

existing user agents such as graphical browsers and newsreaders show favicon as a visual

reminder of the website identity in the address bar. If the favicon is loaded from a domain other

than that shown in the address bar, then the webpage is likely to be considered a phishing

website. For this attribute, we checked the HTML code of each website and found where the

Favicon is loading from. If it is loaded from a foreign domain, we assume that website is a

phishing.

2. Request URL: This feature examines whether the external objects contained within a

webpage such as images, videos and sounds are loaded from another domain. In legitimate

webpages, the webpage address and most of the objects embedded within the webpage are

obtained the same domain. We implemented a Python script which looks at all of the addresses

and marks them as domain-inside or domain-outside. If more than half of addresses are domain-

outside, we will mark the site as phishing otherwise it is a legitimate one.

3. URL of Anchor: This feature looks at the links in the website. If the links in the website point

to a domain different from the domain of the website more than 50% of the time, then the site is

marked as phishing.

4. Links in Tags: This feature looks at the domain in the tags of the header such as

17

5. IMPLEMENTATION

IMPLEMENTATION

5.1 Sample Code

Admin Page Code

def domainAge(domain_name):

creation_date = domain_name.creation_date

expiration_date = domain_name.expiration_date

if (isinstance(creation_date,str) or isinstance(expiration_date,str)):

try:

creation_date = datetime.strptime(creation_date,'%Y-%m-%d')

expiration_date = datetime.strptime(expiration_date,"%Y-%m-%d")

except:

return 1

if ((expiration_date is None) or (creation_date is None)):

return 1

elif ((type(expiration_date) is list) or (type(creation_date) is list)):

return 1

else:

ageofdomain = abs((expiration_date - creation_date).days)

if ((ageofdomain/30) < 6):

age = 1

else:

age = 0

return age

14.End time of domain: The difference between termination time and current time

(Domain_End)

def domainEnd(domain_name):
expiration_date = domain_name.expiration_date

if isinstance(expiration_date,str):

try:

expiration_date = datetime.strptime(expiration_date,"%Y-%m-%d")

except:

return 1

if (expiration_date is None):

return 1

elif (type(expiration_date) is list):

return 1

else:
today = datetime.now()

end = abs((expiration_date - today).days)

if ((end/30) < 6):

end = 0

else:

20

21

importing required packages for this section

import requests

IFrame Redirection (iFrame)

def iframe(response):

if response == "":

return 1

else:
if re.findall(r"[<iframe>|<frameBorder>]", response.text):

return 0

else:

return 1

Checks the effect of mouse over on status bar (Mouse_Over)

def mouseOver(response):

if response == "":

return 1

else:

if re.findall("<script>.+onmouseover.+</script>", response.text):

return 1

else:

return 0

Checks the status of the right click attribute (Right_Click)

def rightClick(response):

if response == "":

return 1

else:

if re.findall(r"event.button ?== ?2", response.text):

return 0

else:

return 1

Checks the number of forwardings (Web_Forwards)

def forwarding(response):

if response == "":

return 1

else:

if len(response.history) <= 2:

return 0

else:

return 1

22

Function to extract features

def featureExtraction(url):

features = []

getDomain(url)

Address bar based features (10)

features.append(havingIP(url))

features.append(haveAtSign(url))

features.append(getLength(url))

features.append(getDepth(url))

features.append(redirection(url))

features.append(httpDomain(url))

features.append(tinyURL(url))

features.append(prefixSuffix(url))

Domain based features (4)

dns = 0

try:

domain_name = whois.whois(urlparse(url).netloc)

except:

dns = 1

features.append(dns)

#features.append(web_traffic(url))

features.append(1 if dns == 1 else domainAge(domain_name))

features.append(1 if dns == 1 else domainEnd(domain_name))

HTML & Javascript based features (4)

try:

response = requests.get(url)

except:

response = ""

features.append(iframe(response))

features.append(mouseOver(response))

features.append(rightClick(response))

features.append(forwarding(response))

#features.append(la)

return features

'''

d='http://www.abxchvina.cn/'

fe = featureExtraction(d)

print(fe)

feature =[]

for i in range(0, len(data)):

print(data[i])

feature.append(featureExtraction(data[i],l[i]))

http://www.abxchvina.cn/%27

23

#converting the list to dataframe

feature_names = ['Have_IP', 'Have_At', 'URL_Length', 'URL_Depth','Redirection',

'https_Domain', 'TinyURL', 'Prefix/Suffix', 'DNS_Record',

'Domain_Age', 'Domain_End', 'iFrame', 'Mouse_Over','Right_Click',

'Web_Forwards', 'Label']

urls = pd.DataFrame(feature, columns= feature_names)

urls.to_csv('', index= False)

from flask import Flask, render_template, request

import dbn as d

import feature_extraction as fe

app = Flask(name)

@app.route('/', methods=["GET", "POST"])

def get_bot_response():

if request.method == "POST":

data = request.form.get('msg')

features = []

features.append(fe.featureExtraction(data))

finalOutput_DBN, reconstructedOutput_DBN = d.dbn.dbn_output(features)

yhat = d.clf.predict(finalOutput_DBN)

if (yhat == 1):

return render_template("phishing.html")

else:

return render_template("legitimate.html")

return render_template("index.html")

if name == ' main ':

app.run()

train_index = range(0, len(train_X))

test_index = range(len(train_X), len(train_X)+len(test_X))

print(train_index)

print(test_index)

24

train_X = pd.DataFrame(data=train_X, index=train_index)

train_Y = pd.Series(data=train_Y, index=train_index)

test_X = pd.DataFrame(data=test_X, index=test_index)

test_Y = pd.Series(data=test_Y, index=test_index)

print(train_X.describe())

class RBM(object):

def init (self, input_size, output_size,

learning_rate, epochs, batchsize):

Define hyperparameters

self._input_size = input_size

self._output_size = output_size

self.learning_rate = learning_rate

self.epochs = epochs

self.batchsize = batchsize

Initialize weights and biases using zero matrices

self.w = np.zeros([input_size, output_size], dtype=np.float32)

self.hb = np.zeros([output_size], dtype=np.float32)

self.vb = np.zeros([input_size], dtype=np.float32)

forward pass, where h is the hidden layer and v is the visible layer

def prob_h_given_v(self, visible, w, hb):

return tf.nn.sigmoid(tf.matmul(visible, w) + hb)

backward pass

def prob_v_given_h(self, hidden, w, vb):

return tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(w)) + vb)

sampling function

def sample_prob(self, probs):

return tf.nn.relu(tf.sign(probs - tf.random.uniform(tf.shape(probs))))

def train(self, X):

tf.compat.v1.disable_eager_execution()

_w = tf.compat.v1.placeholder(tf.float32, [self._input_size, self._output_size])

_hb = tf.compat.v1.placeholder(tf.float32, [self._output_size])

_vb = tf.compat.v1.placeholder(tf.float32, [self._input_size])

prv_w = np.zeros([self._input_size, self._output_size], dtype=np.float32)

prv_hb = np.zeros([self._output_size], dtype=np.float32)

prv_vb = np.zeros([self._input_size], dtype=np.float32)

25

cur_w = np.zeros([self._input_size, self._output_size], dtype=np.float32)

cur_hb = np.zeros([self._output_size], dtype=np.float32)

cur_vb = np.zeros([self._input_size], dtype=np.float32)

v0 = tf.compat.v1.placeholder(tf.float32, [None, self._input_size])

v0 = tf.keras.Input(shape=[None, self._input_size], dtype=tf.float32)

h0 = self.sample_prob(self.prob_h_given_v(v0, _w, _hb))

v1 = self.sample_prob(self.prob_v_given_h(h0, _w, _vb))

h1 = self.prob_h_given_v(v1, _w, _hb)

To update the weights, we perform constrastive divergence.

positive_grad = tf.matmul(tf.transpose(v0), h0)

negative_grad = tf.matmul(tf.transpose(v1), h1)

update_w = _w + self.learning_rate * (positive_grad - negative_grad) /

tf.cast(tf.shape(v0)[0], float)

update_vb = _vb + self.learning_rate * tf.reduce_mean(v0 - v1, 0)

update_hb = _hb + self.learning_rate * tf.reduce_mean(h0 - h1, 0)

We also define the error as the MSE

err = tf.reduce_mean(tf.square(v0 - v1))

error_list = []

'''Once we call sess.run, we can feed in batches of data to begin the training.

During the training, forward and backward passes will be made, and the RBM

will update weights based on how the generated data compares to the original input.

We will print the reconstruction error from each epoch'''

with tf.compat.v1.Session() as sess:

sess.run(tf.compat.v1.global_variables_initializer())

for epoch in range(self.epochs):

for start, end in zip(range(0, len(X), self.batchsize), range(self.batchsize, len(X),

self.batchsize)):

batch = X[start:end]

cur_w = sess.run(update_w, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb:

prv_vb})

prv_vb})

prv_vb})

cur_hb = sess.run(update_hb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb:

cur_vb = sess.run(update_vb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb:

prv_w = cur_w

prv_hb = cur_hb

prv_vb = cur_vb

error = sess.run(err, feed_dict={v0: X, _w: cur_w, _vb: cur_vb, _hb: cur_hb})

print('Epoch: %d' % epoch, 'reconstruction error: %f' % error)

error_list.append(error)

self.w = prv_w

self.hb = prv_hb

26

self.vb = prv_vb

return error_list

function to generate new images from the generative model that the RBM has learned

def rbm_output(self, X):

input_X = tf.constant(X)

_w = tf.constant(self.w)

_hb = tf.constant(self.hb)

_vb = tf.constant(self.vb)

out = tf.nn.sigmoid(tf.matmul(input_X, _w) + _hb)

hiddenGen = self.sample_prob(self.prob_h_given_v(input_X, _w, _hb))

visibleGen = self.sample_prob(self.prob_v_given_h(hiddenGen, _w, _vb))

with tf.compat.v1.Session() as sess:

sess.run(tf.compat.v1.global_variables_initializer())

return sess.run(out), sess.run(visibleGen), sess.run(hiddenGen)

inputX = np.array(train_X)

inputX = inputX.astype(np.float32)

Create list to hold our RBMs

rbm_list = []

Define the parameters of the RBMs we will train

rbm_list.append(RBM(15, 12, 1.0, 50, 100))

rbm_list.append(RBM(12, 8, 1.0, 50, 100))

rbm_list.append(RBM(8, 5, 1.0, 50, 100))

outputList = []

error_list = []

For each RBM in our list

for i in range(0, len(rbm_list)):

print('RBM', i + 1)

Train a new one

rbm = rbm_list[i]

err = rbm.train(inputX)

error_list.append(err)

outputX, reconstructedX, hiddenX = rbm.rbm_output(inputX)

outputList.append(outputX)

inputX = hiddenX

'''

i = 1

for err in error_list:

27

plt.xlabel("Epoch")

plt.ylabel("Reconstruction Error")

plt.show()

i += 1

class DBN(object):

def init (self, original_input_size, input_size, output_size,

learning_rate, epochs, batchsize, rbmOne, rbmTwo, rbmThree):

Define hyperparameters

self._original_input_size = original_input_size

self._input_size = input_size

self._output_size = output_size

self.learning_rate = learning_rate

with tf.compat.v1.Session() as sess:

sess.run(tf.compat.v1.global_variables_initializer())

for epoch in range(self.epochs):

for start, end in zip(range(0, len(X), self.batchsize), range(self.batchsize, len(X),

self.batchsize)):

batch = X[start:end]

cur_w = sess.run(update_w, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb:

prv_vb})

prv_vb})

prv_vb})

cur_hb = sess.run(update_hb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb:

cur_vb = sess.run(update_vb, feed_dict={v0: batch, _w: prv_w, _hb: prv_hb, _vb:

prv_w = cur_w

prv_hb = cur_hb
prv_vb = cur_vb

error = sess.run(err, feed_dict={v0: X, _w: cur_w, _vb: cur_vb, _hb: cur_hb})

print('Epoch: %d' % epoch, 'reconstruction error: %f' % error)

error_list.append(error)

self.w = prv_w

self.hb = prv_hb

self.vb = prv_vb

return error_list

function to generate new images from the generative model that the RBM has learned

def rbm_output(self, X):

5.2 Screenshots

Fig.5.2.1 Homepage

Fig.5.2.2 Phishing Detection

Fig.5.2.3 Trusted Site

29

6. ADVANTAGES

ADVANTAGES

Improved Approach: Domain Name Based Features With the Fresh-Phish framework, we

learned several lessons and were able to get a better understanding of the features that need to be

used for phishing detection. For instance, one lesson we learned is that the problem of phishing

cannot be viewed in a statistical way and needs to consider the intent of the attackers for fooling

the users. Therefore, the features should be finally chosen for phishing detection, should reflect

this intuition. Another important lesson we learned was there is a strong correlation between the

domain name and the nature of the websites. Based on these observations, we now describe our

solution. Our work is the first solution to be entirely focused on the domain name of the phishing

website. In our work, the domain name is the string before the top-level domain identifier, e.g.,

for the URL google.co.uk, the domain name is google. We only concern ourselves with

examining the landing page of this website and with the information that can be extracted from

this page without the help of third-party servers, search engines or DNS servers. Our approach is

based on the intuition that the domain name of the phishing websites is a key indicator of a

phishing attack. We design several features that are based on the domain name and train a

machine learning classifier based on sample data. The trained classifier is used to test a

suspicious website against these features. In the following, we describe the key challenges in our

proposed approach and our solutions to these challenges.

30

7. APPLICATIONS

APPLICATIONS

Phishing campaigns usually work based on a three-part scheme. The first part is using email

or some form of communication to lure users and redirect them to a phishing page. The fake

page closely mimics a trustworthy site. Finally, the user enters their information, which is

captured by the adversary. In our proposed approach, instead of defining features that group the

phishing websites together, we relate a suspicious phishing website to its target and define

features based on the similarity of a given suspicious website and its target.Reach more

customers.

Phishing attacks are constantly evolving and the cyber world is hit by new types of

attacks often. Hence a particular detection approach or algorithm cannot be tagged as the best

one giving exact results. Through the literature survey, it is evidently visible that Random Forest

gives better results in most scenarios. But then the performance of each algorithm varies

depending on the dataset used, train-test split ratio, feature selection techniques applied etc.

Researchrs prefer to create machine learning models that perform phishing detection with best

value for evaluation parameters and least training time. Therefore, the future works should focus

on these aspects of phishing detection.

32

8. CONCLUSION

CONCLUSION

The goal of this thesis was to explore the possibility of using machine learning to detect

phishing URLs without performing additional scraping of the URL itself. The first chapter

overviewed the recent trends in phishing, listed the general types of internet-based phishing, and

focused on describing the main techniques of creating a deceptive URL. The second chapter

provided a brief high-level overview of the machine learning landscape as a whole. A description

of the available data and the methods of its collections were presented in the third chapter.

Chapter four outlined the basic principles upon which each of the selected machine learning

algorithms works and highlighted their main strengths and weaknesses. The fifth chapter

explains the methodology used for the conducted experiment. Chapter six informed on the

process of the model training phase and the final choices of hyper parameters for the individual

algorithms. Finally, the seventh chapter provided an evaluation of models’ performance,

summarized the results of the experiment, and discussed the limitations and possible

improvements to the approach. The results of this experiment show that we are able to detect

phishing URLs with a precision of 96% (for the positive class) and classify URL as benign or

phishing with an accuracy of 95% using Random Forest algorithm. All of the other used

algorithms performed rather similarly except for Naive Bayes, which showed slightly worse

results. The primary output of this thesis is the in-depth description of the possible approach to

tackling the phishing detection problem without any web scraping. The secondary output is a

standalone machine learning project that allows for future replications or modifications of the

performed experiment.

34

9. REFERENCES

REFERENCES

1.. SHENG, Steve; WARDMAN, Brad; WARNER, Gary; CRANOR, Lorrie; HONG, Jason;

ZHANG, Chengshan. An Empirical Analysis of Phishing Blacklists. 2009.

2. Phishing Activity Trends Report Q4 2018 [online]. APWG [visited on 2020-04-13].

Available from: https://docs.apwg.org/ /reports/apwg_trends_report_q4_2018.pdf.

3. GUARNIERI, Claudio. The Year of the Phish [online]. Nex [visited on 2020-04-12].

Available from: https://nex.sx/blog/2019/ 12/15/the-year-of-the-phish.html.

4. Phishing Activity Trends Report [online] [visited on 2020-04-13]. Available from:

https://apwg.org/trendsreports/.

5. Uniform Resource Identifier (URI): Generic Syntax [online]. IETF [visited on 2020-04-18].

Available from: https://tools.ietf. org/html/rfc3986.

6. KOZA, John R.; BENNETT, Forrest H.; ANDRE, David; KEANE, Martin A. Automated

Design of Both the Topology and Sizing of Analog Electrical Circuits Using Genetic

Programming. In: Artificial Intelligence in Design ’96. 1996, pp. 151–170. ISBN 978-94-

009-0279-4. Available also from: https://doi.org/10.1007/978- 94-009-0279-4_9.

7. MITCHELL, Tom M. Machine Learning. In: McGraw-Hill, 1997, p. 2. ISBN 978-0-07-

042807-2.

8. GERÓN, Aurelién. Hands-On Machine Learning with ScikitLearn, Keras, and TensorFlow.

In: O’Reilly Media, Inc., 2017, chap. 1. ISBN 978-1-49-203264-9.

9. Transport Layer Security (TLS) Extensions [online]. IETF [visited on 2020-04-18].

Available from: https://www.rfc-editor.org/ info/rfc3546.

10. GERÓN, Aurelién. Hands-On Machine Learning with ScikitLearn, Keras, and

TensorFlow. In: O’Reilly Media, Inc., 2017, chap. 6. ISBN 978-1-49-203264-9

36

https://apwg.org/trendsreports/
http://www.rfc-editor.org/

	ABSTRACT
	INDEX
	1. INTRODUCTION
	INTRODUCTION
	1.1 Objective

	2. LITERATURE REVIEW
	LITERATURE REVIEW
	2.1 Problem Definition
	2.2 Proposed System
	2.3 Proposed Work
	2.4 Problem Scope

	3. SYSTEM REQUIREMENT SPECIFICATION
	MINIMUM SOFTWARE REQUIREMENTS

	4. System Design
	SYSTEM DESIGN
	4.2 Creating a Phishing Dataset
	4.4 DNS Based
	4.5 HTML Based
	16

	5. IMPLEMENTATION
	IMPLEMENTATION
	5.1 Sample Code
	20

	6. ADVANTAGES
	ADVANTAGES

	7. APPLICATIONS
	APPLICATIONS

	8. CONCLUSION
	CONCLUSION

	9. REFERENCES
	REFERENCES
	36

